Friday, May 1, 2020

Valance Shell Electron Pair Repulsion Theory (VSEPR Theory)

Valance Shell Electron Pair Repulsion Theory (VSEPR Theory)

Concern


The Valence Shell Electron Pair Repulsion Theory abbreviated as VSEPR theory is based on the premise that there is a repulsion between the pairs of valence electrons in all atoms, and the atoms will always tend to arrange themselves in a manner in which this electron pair repulsion is minimalized. This arrangement of the atom determines the geometry of the resulting molecule.

Important points:

  • VSEPR theory predicts the shape of molecules or ions based on the arrangement of the valance shell electron pair around the central atom.

  • Electron Pair  =  Bond Pair + Lone Pair

  • According to VSEPR Theory, valance shell electron are arranged around the central atom such that the repulsion between them becomes minimum.

  • according to VSEPR Theory repulsion between electron pair is
                                    L.P.--L.P. > L.P--B.P. >B.P.--B.P.
          Where,               L.P.: Lone Pair                                                                                                                                           B.P.: Bond Pair

          Reason:

 L.P. is attracted by the nucleus of single while bond pair is attracted by nuclei of two-atom. Thus, L.P. occupy more space around the central atom then bond pair.

  • Triple bond causes more repulsion than double bond and double bond causes more repulsion than a single bond.
VSEPR Theory consider only sigma bond. 

                               shape of molecules or ions:

 1. Electron Pair = 2    
                           With zero L.P.:      Shape: Linear                                                                  
Bond angle:180‎⁰ 
 Example: Carbon Dioxide   
          
2Electron Pair = 3   
case 1 
                                        With zero L.P.:   Shape: Trigonal Planner
                                            Bond angle : 120⁰
                                           Example: BF₃
 BF₃

case 2
             With one L.P.: Shape: V-Shape
Bond Angle:<120‎⁰
Example: SO₂
  
Sulphur Dioxide
3. Electron pair=4 
case 1   
With zero L.P.: Shape: Tetrahedral
Bond angle: 109.5
Example: CH₄
CH₄

case 2
With one L.P.: Shape: Pyramidal
Bond angle: <109.5
Example: NH₃

case 3
With two L.P.: Shape: V-Shape 
Bond angle: <109.5
Example: H₂O

4.Electron pair=5 
case 1
With zero L.P.: Shape: Trigonal Bipyramidal 
Bond angle: 
Example: PCl₅

 case 2
With one L.P.: Shape: See-Saw
Bond angle: <120 , <90
Example: SF₄

case 3
With two L.P.: Shape: T-Shape
Bond angle: <90
Example: ClF₃

case 4
With three L.P.: Shape: Linear 
Bond angle: 180
Example: XeF₂


Blent's rule

When all surrounding atoms attached to the central atom through a single covalent bond than more electronegative atom prefer to stay at the axial position and other atoms prefer to stay at the equatorial position. Bond length of atoms at the axial position is greater than that of atoms at the equatorial position.

5.Electron pair=6
case 1
With zero L.P.: Shape: Square bipyramidal 
Bond angle:90
Example: SF₆

case 2
With one L.P.: Shape: Square Pyramidal
Bond angle:
Example: XeOF₄

case 3
With two L.P.: Shape: Pentagonal Bipiramidal
Bond angle: 90
Example: XeF₄

6.Electron pair=7
case 1
With zero L.P.: Shape: Pentagonal bipyramidal
Example:  IF₇

case 2
With one L.P.: Shape: Distorted Octahedral
Example: XeF₆
                                                                        

No comments:

Total Pageviews

Contact Form

Name

Email *

Message *